POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

-						
Course name						
PO4: Advanced control systems in el	ectromobility - Con	nputer vision for	electromobility			
Course						
Field of study			Year/Semester			
Electromobility			3/5			
Area of study (specialization)			Profile of study			
			general academic			
Level of study			Course offered in			
First-cycle studies			polish			
Form of study			Requirements			
full-time			elective			
Number of hours						
Lecture	Laboratory classes	5	Other (e.g. online)			
15	15					
Tutorials	Projects/seminars					
Number of credit points						
2						
Lecturers						
Responsible for the course/lecturer:		Responsible for	the course/lecturer:			
Marek Kraft, Ph.D., Eng.						
marek.kraft@put.poznan.pl						
tel.: 61 647 5920						
Faculty of Control, Robotics and Electrical						
Engineering						

Poznan, Piotrowo 3A

Prerequisites

Knowledge: The students should have basic knowledge of mathematics appropriate to the level of study - including, mainly, matrix calculation, knowledge of elements of mathematical logic, basics of mathematical analysis and probabilistics.

Skills: The student should have the ability to operate a PC and implement simple algorithms and programming tasks. Additionally, the ability to obtain information from indicated sources is essential.

Course objective

The aim of the course is to learn the theoretical basis of methods of image acquisition and processing for electromobility applications (ADAS, autonomous vehicles). The student should be able to select an algorithm or a set of algorithms that make up a complete vision system and implement and test such a system on their own.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

 Has a structured and theoretically underpinned general knowledge of key IT issues in the field of electromobility, including programming and the use of IT tools in modelling, simulation and design
Has a structured knowledge of sensors, security systems, comfort and monitoring and communication with users in technical systems specific to the field of study

Skills

 Can use literary sources, integrate information obtained, evaluate and interpret it and draw conclusions in order to solve complex and unusual problems in the field of electromobility
Can properly choose and use methods and tools, including advanced ICT, and can develop simple applications to simulate, analyse and design layouts specific to the field of study

Social competences

1. Understands the importance of knowledge in solving electromobility problems; is aware of the need to use expert knowledge when solving engineering tasks beyond his/her own competence

2. Is aware of the importance of own work and the need to observe the principles of professional ethics, is ready to submit to the principles of teamwork and to take responsibility for jointly performed tasks, as well as to care for the achievements and traditions of the profession

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture - final credit test carried out on the Moodle plaftorm.

Laboratories - assigned project and final practical colloquium of credit.

Programme content

Image acquisition, image encoding methods, video encoding

Colour spaces and histograms.

Image preprocessing - local methods (gamma correction, histogram-based processing, thresholding, etc.).

Contextual methods - convolution, linear and non-linear filtration; morphological operations.

Detection of image features (lines, points).

Description and matching of features.

Segmentation and analysis of shapes.

Visualon odometry.

Deep convolutional neural networks.

Building blocks of neural networks used in image processing.

Example network architectures for image recognition - principle of operation and discussion on examples.

Neural network training - backpropagation, optimization algorithms, loss function, metrics, training control and monitoring, hyperparameters.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Neural networks for image segmentation - binary, semantic and panoptic segmentation, selected architectures and loss functions.

Neural networks for object detection - the difference between classification and detection, discussion of several architectures (RCNN, YOLO, EfficientDet). Description of loss functions. Networks for detection and segmentation (mask-RCNN, Yolact++).

Practical implementation of the listed algorithms and issues during laboratory classes.

Teaching methods

Lectures with multimedia presentations, additionally uploaded to a streaming service to be played later. Laboratory classes covering the implementation and testing of selected algorithms of image and video processing using Python and solving selected practical problems

Bibliography

Basic

1. R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010

2. S. Raschka, V. Mirjalili: Python. Uczenie maszynowe (2nd ed. or later), Helion

Additional

A selection of scientific articles related to the subject

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	30	1,5
Student's own work (literature studies, preparation for	20	0,5
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate